ENERGY BALANCE IN A PLASMA CLUSTER
WHEN SCATTERED IN A VACUUM
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The plane scattering of a target acted upon by an external source of energy is considered
analytically. The energy balance in the cluster during the scattering is obtained ignoring
the loss due to radiation.

The scattering of a plasma cluster in a vacuum when acted upon by an external flow of energy (a laser
[11, electron beams [2], and relativistic electron beams [3-5]) has been investigated in many areas of modern
experimental high-energy physics. Since experiments have been carried out on the dynamics of the scattering
of a target a theoretical consideration of this process is now urgent. Many important problems in this area
have been investigated numerically but it is also of interest to have rougher models which can be subjected to
an analytical investigation. In this paper, unlike [6, 7], we consider the steady-state scattering of a plasma
cluster analytically, and we use the "mean ion" approximation to calculate the thermodynamic functions.

Model of the Interaction of an External Energy Source with a Plasma. It is convenient to distinguish
three energy subsystems in a plasma cluster: free electrons, ions, and excited states of the ions (see [8]).
Thermodynamic equilibrium inside these subsystems is established much more rapidly than heat exchange
between the subsystems. Energy is evolved from the plasma due to different forms of radiation and is also
converted into kinetic motion — scattering of the plasma cluster. A sketch showing the energy conversion in
the plasma of a target is given in Fig. 1. Below we will consider only scattering of a cluster without loss due
to radiation.

When the cluster is heated by a laser the energy of the external source is contributed to the free electrons.
We will neglect the possibility of a non-Maxwellian "tail" of fast electrons occurring and we will assume that
the imbedded energy is rapidly thermalized and is then redistributed between the subsystems.

When an electron beam or a relativistic electron beam interacts with the plasma the energy of the beam
is transferred mainly to the bound electrons, and then via recombination and deexcitation of the levels to the
free electrons. We will take into account the value of the energy contribution by means of a parameter speci-
fied from additional considerations. We will obtain some estimates by directing our attention to relativistic
electron beams because of the large range of experimental work which has been carried out in this region.

It can be assumed that slowing down of the fast electrons occurs with approximately the same cross-
section for free and bound electrons. Then, the braking ability of a beam electron de/dx is proportional to
the total electron density ZN

1
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Here E is the energy of a beam electron; Z, charge on the nucleus of the target atoms; N, density of the target
nuclei; and o, cross-section representing the energy loss; the quantity <oE > should be averaged over the elec-
tron trajectory (this problem has not yet been solved).* We will start from the specified value of the energy
contribution per unit volume of the target W (erg/ em®- sec), in terms of which it is easy to express the energy
flux density contributed to the target q = Wx;, where ¥, is the initial thickness of the target. It follows from

(1) that
*Experimental data clearly indicate that in high-current beams the depth of penetration into the target is con-

siderably less than the path of an individual electron. This effect is obviously due to Larmor rotation of the
electrons in the magnetic field induced by the beam current [3, 4].
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Fig. 1. Sketch of the conversion of the energy of an ex-
ternal source in a plasma cluster.
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Here j is the beam current density. For a rectilinear electron trajectory we can use the Bethe formula
for the braking ability
2met ¥ [ me® 2
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where y = (1 — v¥/c®)~L > 1; and I is the ionization potential of the principal ions of the target. Starting from
the specified value of g, we can define a certain effective flux density jorp such that

7
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Neglecting the logarithmic dependence on v and I (y ~ 4 for ¢ ~1 MeV and I 50 eV) we provisionally obtain
Joff ~ 2.109 ¢/ZNx. As an example for q ~ 102 W/cm? (10" erg/cm’ sec), N ~5:10% cm=?, x, ~ 5-10~* cm,
and Z ~ 80 [2-4], we obtain jegr ~¥10° A/ecm®. Note that in this case

Jegr C9E2
i )
I (oE ‘rect .

Only this value of jopf can ensure the specified energy contribution to the target (i.e., absorption of the flux

g in the foil thickness).

~ 102,

Thermodynamic Functions of the Plasma. To describe the hydrodynamic motion of a plasma it is neces-
sary to obtain the relationship between its macroscopic parameters such as the electron temperature Te, ion
temperature T, electron density Ng, internal energy per unit volume &5, and pressure P. We will start by
considering the ionization state. We will determine the density of the most represented ions. We will assume
that in view of the high density of the solid target local thermodynamic equilibrium occurs for the most repre-
sented ions, i.e., the Saha distribution for the ion multiplicities and the Boltzmann distribution for the excited
states of the ions. This assumption is natural when the target is heated by a laser. When using this assump-
tion when the target is heated with a relativistic electron beam it is necessary for the following conditions to
be satisfied:

a) the presence of ionization by a beam of fast electrons should not displace the ionization equilibrium
of the main ions, i.e.,

. (3)
ion

.
VB = T Jegf Ok (Eo) K SiNe,

where vy (sec“l) is the rate of ionization of ion k by beam electrons; oo jonization cross-section; Ej, energy

of the fast electrons; Si(Ey), rate constant of plasma ionization by Maxwellian electrons; and k ~ kp,, charge
of the main plasma ions;

b) the equilibrium with respect to ionization multiplicities should not be disturbed due to scattering
SN, =1, k~k_; (32)
v
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c) radiational transitions should have no effect on the Boltzmann distribution of the populations of the
excited states of the most represented ions, i.e.,

NS> AHVE, B~k (3b)

for all the levels n; Ag (sec™!) and VE (em?. sec™!) arethe probability and rate constant of the radiational and
collisional decay of the level n, respectively.

To calculate the thermodynamic functions of the plasma we will assume that conditions (3) are satisfied,
and we will demonstrate their correctness later by means of specific estimates.

The Saha distribution of the ions with respect to the multiplicities has the form*

NeNk_i Sk_1 (4)

- = 6-102T2 exp (— 4/ Te),
Ny B )

where ) (ecm®- sec™) is the rate constant of triple recombination of the ions on electrons. Further, for con-
venience, we will approximate the ionization energy of the ion K by the formula I = A(Z, k) k?, where A(Z, k),
eV is an adjusting constant (Z is the charge of the nucleus of the ions), With this multiplicity the most repre-
sented ion (where Ny ~ Ny, Ng ~ kyN) can be estimated from the equation

- 1021732 7172 . 5
ko A Zﬁm(uﬂ ~1/ 2~ (5)
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This expression holds approximately in the region 10 < T < 200 eV and 10% = Ng =10* cm™. Bearing in

mind relation (3) and Pitaev's equation [9] for the rate of triple recombination of an electron, we obtain the
relaxation rates for the ions k ~ ky,

8 (6)

S _ o —
Br ~ Th ~ 1072753 1T o (?) 1072777,

e

Considering the plasma scattering foil as an ideal mediumt characterized by a "mean charge" k ~k,,
we can write approximate equations for the thermodynamic functions of the plasma. The thermal energy E1
of unit volume

(6a)
Er = QE (N,T,+ NT)~ 3 I/ENTS/Z.

We will calculate the ionization energy of the plasma

6b
E., = (é Ny i Ak’z)z—léﬁ— ]/ %NT?’Z, (o)

B=0  B'=0

in which case the total internal energy is

2% .
Egn=Er+ B, = l// ZQNTf”z 1.6-10°2 %5_ ] / %Nrgﬂ ferg ]

and

1/3
Tolev] = 178107 (—/2‘ | e (6¢)

The pressure of the plasma
(6d)

P=(N.T.+ NT)~21/ 2 NT

* In practical formulas the energy characteristics of the ions and electrons, and also the temperatures, are
measured in eV, while the remaining quantities (where this is not stated) are in cgs units.

T A plasma of solid-state density with temperature T, ¢ 3 eV, as estimates using the relation Ngjq < 3- 10%0.
(Te/ km)3 show, is nonideal. However, inatimety ~ 10~ sec the plasma is heated (see the paragraph entitled " Model
of plasma scattering") upto T 33 eV and is scattered to adensity Ne ~ 1022¢m~3, at which it canbe regarded as an
ideal gas (Ngjg ~ 10% cm-). The mainenergy of the external source ina time 7> t, is infroduced therefore into an
ideal plasma.
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In the estimates (6) we took into account the fact that No ~ky N, kpnTe = T. In these approximations the heat
capacity of the plasma depends on the temperature

(L) -2 /T g
or, ), 2 A

Equations (3) and (8) are of course only satisfied if the plasma ions are not completely stripped, i.e., km< Z.

We will now consider the interesting practical case of small Z when the most representative ions are
completely ionized almost from the beginning of the action of the external pulse. Then Ne =~ ZN and
3 3 (8)
Er o~ 5 ZT.+T)N ~ ?ZNTQ, E;n= NAL

Eyn ~NAI + % NZT,, (8a)

where Al is the fotal ionization energy of atom Z, and
P~ ZNT,. (8b)

It can be seen that in this case the temperature dependence of the heat capacity of the plasma disappears.

It follows from these results that the internal energy and the pressure are proportional P = (6/25)Ein'
This effect considerably simplifies the consideration of the problem. For example, multiplying the equation
of motion by the velocity v = dx/dt, we obtain a useful expression relating the kinetic energy Ejjp = Myv%/2
and the internal energy

L odBy 6 1 dx ®
Esn  dt 25 x di

In order to show the effect of radiation on the dynamics of the scattering we will consider two limiting
cases: scattering without radiation losses and scattering with volume losses without reabsorption.

Plasma Scattering Model. 1. Initial Equations. Consider plane scattering of a target subject to the ac-
tion of a volume source of energy dissipation. The volume nature of the energy dissipation in the case of a
relativistic electron beam is ensured both due to the path of the electrons in the depth of the target, and due to
the electron thermal conductivity, while in the case of a laser it is solely due to thermal conductivity, as has
already been discussed in the literature {1]. Assuming that the target is fairly thin we will assume that all the
physical quantities are uniform over the thickness of the target. In this approximation scattering of the cluster
will be described by the following equations:

~ o~ du d [+~ 02 -~
UNx = M,, M, E:P’ E‘(MO_Q—‘}_EB]) =4 —qraar

10)

Here p is the mass of the heavy particle; M = uNx, ﬁo = uNyXp, Ein = Ejpx, surface density of the internal

energy; Ny, N, initial and current values of the density of the target material; qpaq = Qpagx, flux density of
the radiation from the plasma; Qrad’ total radiational losses from unit volume; x, coordinate; and t, time.

In (10) we have also assumed that

0P/ox =~ Plx. (11)

2. Scattering without Radiation. We will put q = q4tS, where qg and s are certain constants, and qpgag=0.
System (10) takes the form

(12)

~ . 6~ d( Mz = ‘

MO’”‘"EEIH’ Tit—( 9 +Ein)“"qst-

We will seek a steady-state solution in the form of power relations xwnt® Ein o~ tB The constants @ and 8 are

chosen so that the time dependences of the left and right sides in (12) are the same. This condition is satisfied

when 200 —2 =8, B—1 =s. Hence, 8=s +1, o = (s +3)/2. Hence, the steady-state solutions are
s_—}-ﬁ

=3 s+1 2
Eirl:est_r 4 x:yst s

(13)
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where &g and yg are given by the equations

—~ % ] ~
Mols+ 1)(s+3) 58 =6y, —My(s--3) g2 +e,= 1, (14)
o(s+1)(s+3)y € %’ 8 o{s - 3) ys + & .
whence we obtain
a —~—~
s = — .= [12 (14 1/2. 1
¢ 285+ 34) ' 7 [129,/(14s + 17) (s + 3) (s + 1) Mol (15)

From their physical meaning the quantities qg, €5, and yg are positive. Consequently, the region of possible
values of s for the steady-state solutions is limited by the condition s > —1,

From (13) and (9) we have the following ratio of the kinetic energy and the internal energy of the plasma
in the steady-state mode:

Eiy/ Fin=3(s - 3)/25(s 4- 1). (16)

The time dependence of the plasma temperature follows from relation (6c) Ein mT:’é/ 2, Hence,

T ()= 5 t® .
(s34 161/ 2T, tevl

/ 3. 1012473 )2/3 2(54-1) 17
We will introduce the instant of time t; such that when t = t; the coordinate takes the initial values x(t)) =
%. Then '

I\ ~(f\sH £\
x=x0<'_—> ’ E;m(t): EO(_) sTe:Tw(_) » (18)
tO tO t()
where E; = es’cg H, %) = ysty © , etc. We will assume the initial size of the plasma x; to be specified and we
will express the other quantifies in terms of it:

~ 2 1
5 4 3 P
to=(xg]//‘;:>+3<(l s+ 17)(s + )(s+1)) ¥

12
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T90: ( q ) tﬂ 3

(285-+34)- 1.6 l/% A

The quantity t, represents the time taken for arbitrary initial parameters to reach the steady-state mode.
We can show this by considering the relaxation of small deviations 6x and 6E;, from solutions (13). In fact,
we obtain from (12)
6 oF;, (20)

. - 6 in s =~
x6x + x6x = 55 ——Mo , Myx6x + 8Ej, = 0,

where x(t) is given by Egs. (13), (15). Equations (20) can be converted to the form
B 2SRy GEDEED g
25 8 4
The characteristic relaxation time is simply a quantity of the order of the scattering time t. At the ini-
tial instant t ~ t, when x ~X;, and consequently {; represents the relaxation time of the initial parameters to
the values specified by Eqs. (19).

Consider the scattering of a target of light atoms. For a large value of the energy contribution and
small Z of the target atoms the plasma, during practically the whole time during which the external source
acts, consists of bare nuclei and free electrons. Using the thermodynamic functions of such a plasma (9) and
ignoring the losses due to radiation, we obtain
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L 1 ’ 21
Myx ¢ l—NoAl- (21)

—_ 2
Moxx = *3*15

in" Ty in = 9s s
Here Ein = (3/2)Px, where NjAI is the total ionization energy of the target atoms. The characteristic total-
jonization time £, o [ MG

5+3 ds
form: x = ygt 2 , By = egtS*. We have for yg and eg

1/s+1
) ’ . When t >t it is easy to show that the solutions of (21) have the same

395 . TF 172 (22)
= s Ys = dg(s + 1 3)(2 .
Tos Ty T WO D+ 3@+ M
From (9) we obtain the following relation between Ej, and Ey,:
Eyin'E = (s + 3)/3(s -+ 1). (23)

Hence, for a constant external flux q = q; (s = 0), 9/{25+9) of the total energy contribution is converted
into kinetic energy of motion of a cluster with large atomic weight, while 25/34 is converted into internal energy
of the cluster. For scattering under these conditions 3/(3 +3) = 0.5 of the total energy contribution is converted
into energy of motion of a cluster of light atoms, while the remaining part of the energy goes into heating and
ionizing the cluster.

The dependence of the energy contribution on time has a considerable effect on the energy distribution
between the different subsystems. It can be seen from (16) that when s is reduced the fraction of the kinetic
energy increases. When s > 1 the kinetic energy is ~ 12% of the total internal energy of the plasma; for s = 0,
Ekin/Ein ~ 27%; for an energy contribution that falls with time (s < 0), it is obviously possible to have a mode
in which the plasma is accelerated with weak heating (Egin/Ejn > 1 as s ——1).
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